Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.

نویسندگان

  • Dipendra Gyawali
  • Parvathi Nair
  • Harry K W Kim
  • Jian Yang
چکیده

Previous studies have confirmed that natural bone apatite crystals are bound with citrate-rich molecules. Citrates on apatite crystals impact bone development and its load-bearing function. However, such understanding has never been translated into bone biomaterials design. Herein, a first citrate-based injectable composite material for orthopedic applications is developed based on our recently developed biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and hydroxyapatite (HA). PEGMC contains rich carboxylic groups that could chelate with calcium-containing HA thus facilitating polymer/HA interactions, similar to natural citrate-bound apatite crystal. The crosslinking of poly(ethylene glycol) diacrylate (PEGDA) with PEGMC/HA composites allows an addition control over degradation and mechanical properties of the crosslinked PEGMC/HA (CPEGMC/HA) composites. CPEGMC/HA composite can serve as an ideal injectable cell carrier as confirmed by the enhanced DNA content, ALP activity, and calcium production through a human fetal osteoblast encapsulation study. Ex vivo study on porcine femoral head demonstrated that PEGMC/HA is a potentially promising injectable biodegradable bone material for the treatment of osteonecrosis of the femoral head. Development of biodegradable citrate-based injectable PEGMC/HA composite is an initial step for the development of the next generation of bone tissue engineering and orthopedic biomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds.

Injectable biodegradable hydrogels, which can be delivered in a minimally invasive manner and formed in situ, have found a number of applications in pharmaceutical and biomedical applications, such as drug delivery and tissue engineering. We have recently developed an in situ crosslinkable citric acid-based biodegradable poly (ethylene glycol) maleate citrate (PEGMC)/hydroxyapatite (HA) composi...

متن کامل

Synthesis and characterization of biomimetic citrate-based biodegradable composites.

Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-...

متن کامل

A citric acid-based hydroxyapatite composite for orthopedic implants.

We describe a novel approach to process bioceramic microparticles and poly(diol citrates) into bioceramic-elastomer composites for potential use in orthopedic surgery. The composite consists of the biodegradable elastomer poly(1,8-octanediol-citrate) (POC) and the bioceramic hydroxyapatite (HA). The objective of this work was to characterize POC-HA composites and assess the feasibility of fabri...

متن کامل

Injectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery.

DNA nanotechnology-based nanosystems and macrosystems have attracted much attention in the biomedical research field. The nature of DNA endows these systems with biodegradable, biocompatible, and immunomodulatory properties. Here, we present an injectable hydrogel system that consists only of chemically synthesized short DNA strands, water, and salts. Several preparations of polypod-like struct...

متن کامل

Hydrogel mediated delivery of trophic factors for neural repair.

Neurotrophins have been implicated in a variety of diseases and their delivery to sites of disease and injury has therapeutic potential in applications including spinal cord injury, Alzheimer's disease, and Parkinson's disease. Biodegradable polymers, and specifically, biodegradable water-swollen hydrogels, may be advantageous as delivery vehicles for neurotrophins because of tissue-like proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials science

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2013